Het menselijk lichaam heeft voldoende zuurstof nodig om goed te kunnen functioneren. Een gezond lichaam regelt de zuurstofconcentratie in het bloed via het ademhalingssysteem. Als de waarden van een patiënt te laag of te hoog zijn, betekent dit dat er iets mis is gegaan met de ademhaling. Daarom zijn betrouwbare metingen van de zuurstofconcentratie in het bloed vooral cruciaal bij de zorg voor patiënten met ademhalingsproblemen die kunstmatig worden beademd. Op dit moment is de meest gebruikelijke methode om hypoxie vast te stellen – wanneer het zuurstofgehalte te laag is – een niet-invasieve methode die bekend staat als pulsoximetrie.
Een klein apparaatje – een pulsoximeter – wordt aan de vinger van de patiënt geklemd om de O2-concentratie in het bloed weer te geven. Het probleem is dat de metingen niet nauwkeurig zijn. De enige manier om betrouwbaardere waarden te krijgen, is een bloedmonster te nemen en vervolgens een bloedgasanalyse uit te voeren. Dat is een onplezierige en soms zelfs pijnlijke procedure voor de patiënt. Fraunhofer IPM in Freiburg heeft een niet-invasieve sensor ontwikkeld in een poging om in de toekomst pijnloze en toch ultra-nauwkeurige metingen mogelijk te maken. De sensor wordt bevestigd aan een ademmasker of beademingsbuis. De innovatie zal volgens onderzoekers de huidige stand van de technologische vooruitgang overtreffen in termen van nauwkeurigheid en kosteneffectiviteit. En het zal bestaande meetsystemen vervangen.
“Onze sensor meet het zuurstofgehalte in de adem van mensen. Daardoor kunnen we extrapoleren naar de zuurstofconcentratie in het bloed,” zegt Mahmoud El-Safoury, projectmanager bij Fraunhofer IPM. “We gebruiken het “dovende “quenching” effect voor de O2-sensor die we hebben ontwikkeld.” Bij deze methode wordt een fluorescerende coating op een aluminiumsubstraat blootgesteld aan kortgolvig licht. Daardoor gaat de laag gloeien. Het uitgezonden licht heeft een langere golflengte dan het licht dat de fluorescerende stof “opwekt”. Dat betekent dat het een lagere energie heeft. Wanneer zuurstofmoleculen vervolgens in contact komen met de coating, wordt het fluorescerende licht duidelijk verzwakt. Hoe zwakker het licht, hoe hoger de zuurstofconcentratie. “Onze meetmethode is zo snel en nauwkeurig dat we zuurstofconcentraties tot op het niveau van individuele ademhalingen kunnen meten,” legt El-Safoury uit.
Om de fluorofore coating te ontwikkelen, bestudeerden de onderzoekers van Fraunhofer IPM verschillende fluorescerende chemische verbindingen met optimale eigenschappen op het gebied van responstijd, signaalintensiteit en stabiliteit op lange termijn. Uiteindelijk kozen ze voor een type pyreen. Om de laag te maken moest de fluorofoor worden ingebed in een geschikte matrix, wat een complex proces is. “Quenching wordt al gebruikt om de concentratie van opgeloste zuurstof in vloeistoffen te bepalen in sectoren zoals de voedingsindustrie en bij water- en afvalwaterzuiveringsinstallaties. Het is echter een nieuwe methode in de medische techniek,” zegt Dr. Benedikt Bierer, groepsmanager bij Fraunhofer IPM.
Een ander voordeel van dit principe is dat de sensor een continue meting van zuurstofconcentraties gedurende een hele dag mogelijk maakt. Invasieve arteriële bloedafname wordt daarentegen slechts één keer per dag uitgevoerd of, voor kritieke patiënten op de intensive care, meerdere keren per dag. Dit betekent dat er in de tussenliggende tijd geen gegevens zijn over eventuele veranderingen in de gezondheidstoestand van de patiënt.
De miniatuursensor meet slechts 26 mm in diameter. Hij kan worden aangesloten op elke T-connector, een gestandaardiseerde adapter die vervolgens wordt aangesloten op een beademingsmasker of beademingsbuis. De sensorkop met geïntegreerde optiek bevat een LED-lichtbron, een detector, twee saffierlenzen en een monster met de fluorofore coating. Dit onderdeel zal het ziekenhuispersoneel regelmatig moet vervangen. Het monster moet steriel en gasdicht worden bewaard, net als verband.
De onderzoekers onderzoeken momenteel of er kruisgevoeligheden zijn voor andere gassen zoals CO2 die het zuurstofmeetsignaal van de sensor zouden kunnen beïnvloeden. De invloed van parameters zoals vochtigheid en temperatuur op het signaal wordt ook bestudeerd, samen met de stabiliteit van het systeem op lange termijn en de verschillende steriele opslagopties. “Er is een breed scala aan potentiële toekomstige toepassingen. De piepkleine sensor kan worden gebruikt door paramedici, in ziekenhuisomgevingen en zelfs thuis door patiënten met longaandoeningen,” aldus El-Safoury.
Openingsfoto: De niet-invasieve miniatuursensor kan via een T-connector in bestaande ventilatieapparatuur worden ingebouwd (foto: Fraunhofer IPM)
Lees ook: Ontwikkelaar van autonome bloedafnameapparaten haalt 20 miljoen dollar op